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INTERFERENCE ON AN AIRFOIL OF FINITE- SPAN IN AN OPEN RECTANGULAR
WIND TUNNEL

By TeEOoDORE THEODORSEN

SUMMARY

The wall interference on an airfoil of finite span in
an open-throat rectangular section has been treated
theoretically and the result is presented n a conventent
Jormula. Numerical results are given in tables and
diagrams.

INTRODUCTION

Recently a number of investigators have been en-
gaged in the study of wind-tunnel wall interference.
Until o short time ago the only results available were
the interference in a circular section by Prandtl (ref-
erence 1) and the closed rectangular section by Glauert
(reference 2) with the latter result valid for small
spans. The author (reference 3) then added the general
theory for rectangular sections. Of particular interest
was the interference in an open rectangular section.
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These results were also restricted to small spans. Some
time ago Terazawa (reference 4) and subsequently
Rosenhead (reference 5) solved the problem of the
interference on an airfoil of finite span in a closed rec-
tangular tunnel. It remained for Glauert to bring the
result into a form more suitable for calculation; the
results are given in reference 6. A very interesting
paper by Sanuki and Tani (reference 7) then produced
the interference for the elliptic tunnels both open and
closed and for airfoils of any span. In the meantime
Glauert (reference 8) had already solved the particular
case of small spans. It thus appears that the only case
not available is the interference on an airfoil of finite
span in an open rectangular tunnel. This problem will
be studied in the following.

THE WALL INTERFERENCE ON AN AIRFOIL OF FINITE
SPAN IN AN OPEN RECTANGULAR TUNNEL

In figure 1, T represents one of the semi-infinite
trailing vortices of an airfoil. The airfoil is located

symmetrically ih the tunnel which is of the open, or
free-jet, type.

Mathematlcally the problem is now to find a stream
function, regular in the interior of the rectangle, and
satisfying the boundary condition of zero tangential
velocity. The problem leads to elliptic functions due
to the double periodicity. It is fortunately possible to
obtain the result directly by locating a number of sin-
gular points in the exterior region. The arrangement of
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FIGURE 2,

these singular points is shown in figure 2. The singu-
lar points are obviously vortices of strength I'. The
tangential velocity is seen to be zero along all bound-
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FIGURE 3,

aries of the section by virtue of the existing complete

symmetry with respect to each and all boundaries.
We can therefore proceed to consider the stream

function due to the external vortex filaments. This

funection is known for a single infinite row of equidistant

vortices. (See reference 9, p. 207.) We shall put

down the velocity function for an infinite vertical row
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of semi-infinite vortex filaments at z=0 and with a
spacing of h (fig. 3). Thisis
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where v is the vertical veloclty

We simplify the result by putting the z axis through
the vortex representing the airfoil. This permits us
to put ¥=0 in the formula, which becomes

il 27
T S TR
COShT—‘l .

Following Terazawa, we shall now find the total
downflow due to this row of vortex filaments by in-
tegrating along the z axis. Thus

_ LT T T ., 7L
D=fvda:—f4—7bcoth deﬂg_log Smh%

We shall now extend the result to include fwo vertical
rows as in figure 4. Both rows extend from minus to
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FIGURE 4.

plus infinity; the second row contains filaments of
negative sign. The distance between the rows is 2s.
Let the original row be located at +s and the negative
one at —s, respectively, so that the middle point is
located at the origin. The stream function now
becomes

T . - T . +
D=Elog sinh = (Ih ) —Elog sinh W(_a:_k__-s)
(z+s)

47 sinh T(z;s)

We may now complete figure 1 by adding the nega-
tive vortex filaments as in figure 5. The boundary
condition is, of course, still satisfied in proper manner.
Notice that we have a number of double rows like the
one just considered. We expect to calculate the total
downflow between —s and +s at the location of the
airfoil, y=0. Because of the right-left symmetry, it
is only necessary to determine the downflow between
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z=—¢ and z= +¢ due to all vortex rows located on
one side of the y axis. Now, however, the contribu-
tion to this downflow due to a certain double row, say
the nth, is8 numerically the same as the downflow at
the location of the nth row caused by the double row
at the origin. It is therefore only necessary to cal-
culate the downflow of this double row located at the
origin between the limits 2=nb—s and 2=nb+s.

To obtain the actual downflow due to the first
exterior double row at z=b, we simply put in the
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limits 2=b—s¢ and £=>b+s in our equation (1). This

gives as the downflow due to this row
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For the nth double row consequently

sinh? 1_275‘

- o

ijiliﬂ_ (—Dmnlog| 1
sinh? TF

and for the entire downflow due to all rows from
z=—o to z=+ o, except the one at the origin,
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The double row located at the origin requires a
separate treatment. We desire to find the effect of
the exterior vortices only; we must therefore eliminate
the effect of the vortex pair representing the airfoil
at y=0.

The verticel-flow velocity of one semi-infinite vortex

at the origin is 4%; % Integrated, this gives the down-

flow

T
D=Elogz

Putting a positive vortex at —s and a negative
vortex at +3 leads to a total downflow

D——l gﬁf

By adding this expression to (1) we obtain the
desired result
z+s
sinh 75— 3
z+s
TR
z—8
sinh ﬂ'—h—

D1=———log

L

We may now put in the limits x=—s to z=+s,
which gives the downflow of the zero double row
. 28
sinh F
28
"R
By adding the equations (2) and (3) we obtain
finally:

T
Dy=—5_ log

. sinhw ® sinh? 20
D= —5. log 28 +2('— " log| 1 —m
™ ™%

Iy

where i represents the negative of the quantity in
the brackets.
By means of the relation

T26pV =3 CopV*S
where V is the velocity, p the density of the medium,

and S the area of the airfoil, we obtain

C VS

L= 4s

The angle of deflection of the air stream is given by
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or, with bh=C, the cross-sectional area of the jet, and
D, the ratio of tunnel width to tunnel height,
OLS C_’E:_S' 5
4W( )%

where & is the wall correction factor as conventionally
defined.

Introducing o =5 b , the ratio of the span of the airfoil

to the width of the tunnel, we obtain the final result

b= — 0,{10 Smh"""+2( 1)“log<1

" Table I and figure 6 give the numerical results of
the boundary correction factor § for various spans
o for the height-width ratios of practical importance. -
The series converges so rapidly that the third term
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already is negligible. Notice that the correction in the
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F16URE 6.—Boundary correction factor 3 agninst the span ratio ¢ for open rectangu-
lar wind tunnels of various height-width ratios, h/b.

square tunnel remains practically constant while the
2:1 tunnel shows a considerable change with the span.
The results are strictly true for a constant span load-
ing; however, the vortices T' may be considered to
represent the centers of the trailing tip-vortex systems
and the results thus be extended to include any nor-
mel span loading with an accuracy sufficient for all
practical purposes.

It is interesting to determine the above expression

for s—0.
It appears in the form

=—<——+2( 1) inpe™ )

or exactly as given for this case by the formula (VIII)
on page 6 and by case I on page 8 of a previous report
(reference 3) by the author.

LANGLEY MBMORIAL AERONATTICAL LABORATORY,
NatronaL Apvisory CoMMITTER FOR AERONAUTICS,
Lanerey Fiewp, Va., April 20, 1933.
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